
EBuild

EBuild ii

COLLABORATORS

TITLE :

EBuild

ACTION NAME DATE SIGNATURE

WRITTEN BY January 2, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

EBuild iii

Contents

1 EBuild 1

1.1 EBuild.guide . 1

1.2 EBuild.guide/Introduction . 1

1.3 EBuild.guide/Invoking EBuild . 2

1.4 EBuild.guide/Build Files . 2

1.5 EBuild.guide/Symbolic Constants . 3

1.6 EBuild.guide/Misc . 4

1.7 EBuild.guide/History . 5

1.8 EBuild.guide/The Authors . 5

EBuild 1 / 5

Chapter 1

EBuild

1.1 EBuild.guide

EBuild
The Make clone
Copyright 1997 Glauschwuffel, Wouter, Rob

Introduction

Invoking EBuild

Build Files

Misc

History

The Authors

1.2 EBuild.guide/Introduction

1 Introduction

EBuild is a "Make" clone, and it functions likewise. It is a tool
that helps you in recompiling necessary parts of a large application
after modification.

You write a file ‘.build’ in the directory that contains the sources
of your project. The file contains info about which sources depend on
which, and what actions need to be performed if a module or exe needs
to be rebuilt.

EBuild checks the dates of the files to see if a source has been
modified after the last compilation, and if the source uses modules
that also have been modified, it will compile these first.

EBuild 2 / 5

1.3 EBuild.guide/Invoking EBuild

2 Invoking EBuild

EBuild can be run from any shell. It’s arguments are:

TARGET,FROM/K,FORCE/S,VERBOSE/S,NOHEAD/S,CONSTANTS/S:

If you supply a ‘TARGET’, this way build will start with another
target. ‘FROM’ allows you to use another file than ‘.build’, and
‘FORCE’ will rebuild everything, regardless of whether it was really
necessary.

‘VERBOSE’ makes the program print each action it executes. ‘NOHEAD’
doesn’t print the heading line and the ‘CONSTANTS’ switch forces EBuild
to tell you what symbolic constants are there.

1.4 EBuild.guide/Build Files

3 Build Files

Symbolic Constants
Build files are normally named ‘.build’. This is the file ←↩

EBuild
looks for when it is run.

The syntax of build files equals that of unix-make. In general, ‘#’
precedes lines with comments, and:

target: dep1 dep2 ...
action1
action2
...

‘target’ is the resulting file we’re talking about, in most cases an
exe or module, but may be anything. Following the ‘:’ you write all
files that it depends upon, most notably its source, and other modules.

The actions on the following lines are normal AmigaDos commands, and
need to be preceded by at least one space or tab to distinquish them
from targets.

bla: bla.e defs.m
ec bla quiet

EBuild 3 / 5

This simple example will only recompile ‘bla.e’ if it was modified,
or if the ‘defs.m’ which it uses was modified.

If you type ‘build’ with no args, build will ensure the first target
in the file to be up to date.

A longer example:

test build file

all: bla burp

defs.m: defs.e
ec defs quiet

bla: bla.e defs.m
ec bla quiet

burp: burp.e
ec burp quiet

clean:
delete defs.m bla burp

This build file is about two programs, ‘bla’ and ‘burp’, of which
‘bla’ also depends on a module ‘defs.m’. An extra fake target ‘clean’
has been added so you can type ‘build clean’ to delete all results.

It’s okay to have fake targets, however, these cannot be used as
module dependencies.

Other dependencies and actions are easily added. For example, if
your project uses a parser generated by E-Yacc:

yyparse.m: parser.y
eyacc parser.y
ec yyparse quiet

Or incorporates macro-assembly code as often used tool module:

blerk.m: blerk.s
a68k blerk.s
o2m blerk
copy blerk.m emodules:tools
flushcache tools/blerk

1.5 EBuild.guide/Symbolic Constants

3.1 Symbolic Constants
======================

EBuild v3.3 has symbolic constants. Before writing the rules you can
set a symbol to any value. Those symbols can be used in rules and

EBuild 4 / 5

actions. The text of a symbol will be inserted wherever the symbol is
found.

Example:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e
ec test.e $(options)

or even

testfile=bla
$(testfile):$(testfile).e
ec $(testfile).e

There is one special symbol in EBuild: ‘target’. It holds the name of
the target the current action belongs to. In the example above we can
tell EC to compile the target instead of writing the actual name:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e
ec $(target).e $(options)

This may seem to be not too useful, but take a look at this example:

options=IGNORECACHE LINEDEBUG DEBUG
test: test.e
ec $(target) $(options)
if warn

echo "Error: compile failed"
else

echo "Compiled OK... running"
$(target)

endif

It’s largely equivalent to the old code below, but allows more.

options=IGNORECACHE LINEDEBUG DEBUG
all: test
echo "ok, running:"
test

test: test.e
ec -q test $(options)

All symbols except ‘$(target)’ may be used in rules as well as in
actions. ‘$(target)’, however, may only be used in actions. It’s safe
to have it in rules, EBuild just aborts with a message that tells you
that it doesn’t know this symbol.

1.6 EBuild.guide/Misc

4 Misc

EBuild 5 / 5

Once you get to know build, you’ll discover you can use it for more
purposes than just this. See it as an intelligent script tool.

If you want to find out the details of what build can do, read the
documentation of some unix-make, as build should be somewhat compatible
with this. What it doesn’t do for now, is:

- allow "\" at the end of a line for longer rules

When EBuild discovers a cyclic dependancy it just aborts, i.e. this
won’t be executed:

bla: defs.m blurp.m bla
ec $(target).e

since the target ‘bla.e’ has the dependancy ‘bla.e’. EBuild used to
crash with an infinite loop on this one.

1.7 EBuild.guide/History

5 History

For v3.1 it was updated by Jason Hulance, to fix the bug that
executed actions in reverse order. Also he introduced the local variable
$target in actions.

EBuild was updated for v3.3 by Gregor Goldbach to support symbolic
constants and to stop on cyclic dependancies. The $target behaviour was
expanded to match other symbols: $(target) is legal, too.

1.8 EBuild.guide/The Authors

6 The Authors

Wouter van Oortmerssen is the creator of E. He has studied computer
sciences and lives in England where he occasionally destroys monitors.

Gregor Goldbach loves E, starts studying computer sciences very soon
and lives in Germany. He met Wouter but his monitor is still running.

Jason R Hulance is an Englishman and they say he has met Wouter
several times. He coded some tools for E of which one will work
together with EDBG in the next E release.

Rob is just Rob.

	EBuild
	EBuild.guide
	EBuild.guide/Introduction
	EBuild.guide/Invoking EBuild
	EBuild.guide/Build Files
	EBuild.guide/Symbolic Constants
	EBuild.guide/Misc
	EBuild.guide/History
	EBuild.guide/The Authors

